
SYNTHETIC APERTURE RADAR IMAGE PROCESSING USING THE SUPERVISED 

TEXTURAL-NEURAL NETWORK CLASSIFICATION ALGORITHM. 

 

Oscar Garcia-Pineda, Ian MacDonald, Beate Zimmer. 

 

Texas A&M University Corpus Christi 

 
 

ABSTRACT 

 

Synthetic Aperture Radar (SAR) satellite images have 

proven to be a successful tool for identifying oil slicks. 

Natural oil seeps can be detected as elongated, radar-dark 

slicks in SAR images. Use of SAR images for seep detection 

is enhanced by a Texture Classifying Neural Network 

Algorithm (TCNNA), which delineates areas where layers of 

floating oil suppress Bragg scattering. The effect is strongly 

influenced by wind strength and sea state.   

 

A multi orientation Leung-Malik filter bank [1] is used to 

identify slick shapes under projection of edges. By 

integrating ancillary data consisting of the incidence angle, 

descriptors of texture and environmental variables, 

considerable accuracy were added to the classification 

ability to discriminate false targets from oil slicks and look-

alike pixels. The reliability of the TCNNA is measured after 

processing 71 images containing oil slicks. 

 

1. INTRODUCTION 

 

Locating and quantifying seeps on the Gulf of Mexico 

(GOM) is of interest of both the scientific community and 

oil and gas industry because seeps supply organic carbon to 

the benthos and water column, they can be indicative of the 

extent of mature oil sources on the slope, and seeps are 

associated with interesting diverse biological and geological 

features [2,3]. 

 

Oil seeps are streams of naturally occurring hydrocarbons 

that migrate from below the sediments; they can flow 

through the water column as oil drops, bubbles, and oily 

coated bubbles [4]. A significant part of the oil and gas at 

natural seeps is consumed at the seafloor [5]. However, a 

fraction of the oil and gas escape into the water column and 

rise to the sea surface. The oil that does reach the surface 

forms a thin layer of surfactant particles, often called ‘oil 

slicks’, that floats and generates a drift path strongly 

influenced by wind strength and sea state [6]. 

 

Oil slicks produce distinctive remote sensing signatures 

detectable by Synthetic Aperture Radar (SAR) Satellites like 

RADARSAT-1, ERS1, ERS2, ENVISAT, JERS, and the 

newest generation of SAR systems like RADARSAT-2 and 

Terra SAR-X. Part of the emitted radar energy (5.6 cm 

wavelength) directed at the ocean is reflected back to the 

satellite because of the roughness of the sea surface and is 

imaged as a gray speckle [7]. When sea is smoothed by 

viscoelastic properties of an oil slick or any other surfactant, 

the energy from the radar is reflected away from the sensor, 

reducing the radar backscatter and producing a dark area on 

the image. 

 

The SAR technology is independent of weather and sun 

illumination conditions. SAR images are acquired day and 

night and under cloud cover, which is an advantage over 

other remote sensing sensors. The ability to detect oil slicks 

in SAR images strongly depends on the wind speed at the 

sea surface. Much literature has referred a threshold of wind 

speeds in ranges between 2 to 10 m/s to be able to identify 

oil e.g. [6,8,9], but we have found that the ideal conditions 

to delineate oil slicks and characterize natural seepage in 

terms on flux rates reduces that threshold from 3.5 to 5.8 m/s 

(Figure1). 

 

 
Figure 1. Image collected by Radarsat, 23 May 2006, showing 

multiple slicks in a rotating gyre, Ideal wind conditions (4.2 m/s 

present during this snapshot) allows to clearly detecting oil slicks. 

 

2. DATA INTEGRATION 

 

The first difficulty we face is that from a single raw SAR 

image, it is not possible to discriminate by backscatter the 

seep from other sources likely biogenic in origin. However, 

a time series provides sufficient evidence of the release 

points and general extent even when the seep orientation 

changes in relation to local winds and currents. 

 



Through data sharing agreements with NASA and with 

support from the Alaska Satellite Facility, the Mineral 

Management Service and Texas A&M University we have 

acquired a collection of 574 Radarsat-1 images together with 

their corresponding Oceanographic and Meteorological data. 

All images are chosen to cover the GOM. With these data 

resources, we constructed an algorithm, which efficiently 

processes the data to determine the total number of 

individual seeps, their geographic location and association 

with geological features, and the temporal variability of 

discharge from individual seeps. Satellite and ancillary data 

are organized as follows: 

 

2.1 Image Collection 

 

Radarsat-1 capabilities provides a multiple selection of 

images which differ in resolution, incidence angles, 

ascending or descending orbits among other time and spatial 

constraints. The 574 Radarsat-1 images were classified 

based in its beam modes and time frame. 

 

2.2 Meteorological and Oceanographic Ancillary Data 

 

Based on the GOM Model Port, provided by Texas A&M 

University, each Radarsat-1 image is associated with a grid 

of the wind model output at the moment of the satellite 

snapshot, as well as with its corresponding wind history for 

up to 9 hours before the collection of each Radarsat image 

 

2.3 Descriptors of Texture 

 

An important approach for describing the oil slick 

boundaries is to quantify its texture content, based on the 

gray speckle of the satellite image. This aspect of the 

analysis is crucial also because the brightness of the images 

varies based on the energy returned to the satellite antenna 

along the incidence angle. This method serves as a 

standardization of the aspect of the image. Texture controls 

are used in regions of 25 by 25 . 

 

2.4 The Leung-Malik Filter Bank (LMFB) 

 

The LMFB is a multi-scale, multi-orientation filter bank 

with 36 edge and line detector filters [1]. It consists of first 

and second derivatives of Gaussians at 6 orientations and 3 

scales as shown in Figure 2.  The SAR gray speckle image 

will be analyzed by exposing it to these textural filters in 

order to recover slick shapes under the projection of filters 

in any perspective. 

 

 

 

 
Figure 2.- The filters bank used are a Gaussian and a Laplacian 

both with 10 pixels size (these filters have rotational symmetry), an 

edge filter at 3 scales and a bar filter at the same 3 scales [1]. 

 

Each image is an 8bit file, with a resolution range from 25m 

to 100m. Each image is made up of a M x N rectangular 

array of pixels, and Z(ij) denotes the measurement at the (i,j) 

pixel. The LMFB are used for convolution with the image 

matrix, where each filter is multiplied by the scalar value of 

Z(ij) in order to get the reaction of this multiplication and 

then detects if the image contains an edge associated with a 

slick.  

 

The LMFB is convolved with a neighborhood of each pixel 

of the same size as the filter matrix. The LMFB matrix is 

overlain the image matrix and the matching terms are 

multiplied together and then all added up. Let A denote any 

matrix and B denote a matrix M x N, then their convolution 

C=A*B is defined as:  
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Each pixel has a feature vector associated with it. We use a 

neural network to classify the feature vectors as “slick” or 

“no slick”. 

 

3. ALGORITHM CONSTRUCTION 

 
This algorithm consists of a pixel-by-pixel feed-forward 

Neural Network (FFNN) classification method. To achieve 

this, it is necessary to relate each pixel in a SAR image with 

its corresponding ancillary data, resulting in 55- dimensional 

feature vector for each pixel.  

 

4. NETWORK ARCHITECTURE 

 
This FFNN has 55 inputs and computes one value ofer each 

pixel to identify each pixel as “slick” or “no slick”. We use a 

two-layer network. The log-sigmoid transfer function at the 

output layer was picked because its output range (0 to 1) is 

perfect for learning to output Boolean values. The hidden 

layer has 5 neurons. This number was chosen after analyzing 

and balancing computer computation time versus increasing 

accuracy.  

 

The FFNN is trained to classify pixels output as a 1 for 

slicks and 0 for non slicks. Representative images were 



selected for the training set. Manual classification of these 

images was done using high resolution imaging tools. 

 

5. Conclusion and Results  

 

The reliability of the Texture Classifying Neural Network 

Algorithm is measured after processing 71 images where 

slicks were present. By integrating ancillary data consisting 

of the incidence angle, descriptors of texture and 

environmental variables considerable accuracy was added to 

the algorithm’s ability to discriminate false targets from oil 

slicks and look-alike pixels. Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Full image processed by TCNNA improving false 

target discrimination results by adding ancillary data into the 

FFNN. 

 

For those images were no ancillary data was available the 

algorithm accurately identified 90% of the oil slick pixel 

targets. In contrast by providing the FFNN with all the 

ancillary data, classification accuracy increased to 96%. In 

parallel processing this algorithm was demonstrated to work 

efficiently on a standard commercial workstation.  

 

One of the advantages of this algorithm over some other 

commercial products is that the output is a logical Geotiff 

image (about 2Mb) containing polygons representing oil 

slicks areas keeping its geospatial registration for easy 

handling and spatial statistics in mapping software.   
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